Order Entry
United States
ContactUsLinkComponent
196 results for "Carbohydrates and Sugars"

196 Results for: "Carbohydrates and Sugars"

Sort By
Human Recombinant GALECTIN-3 (from E. coli)

Human Recombinant GALECTIN-3 (from E. coli)

Supplier: VWR International

Galectin-3 belongs to the lectin family of carbohydrate binding proteins. Galectin-3 is expressed by a wide range of cell types including activated T cells, tumor cells, macrophages, osteoclasts, fibroblasts, and epithelial cells. Galectin-3 has specific binding affinity for beta-galactoside sugar moieties and has functional roles during development, innate immunity, cell apoptosis, and tumor metastasis.

Expand 5 Items
Loading...

BBL™ TSI Agar Slants (Triple Sugar Iron Agar), BD

Supplier: BD

Triple Sugar Iron Agar (TSI Agar) is used for the differentiation of gram-negative enteric bacilli based on carbohydrate fermentation and the production of hydrogen sulfide.

Expand 1 Items
Loading...
Carbohydrate Coupling Resin, G-Biosciences

Carbohydrate Coupling Resin, G-Biosciences

Supplier: G-Biosciences

G-Biosciences' Carbohydrate Coupling Resin is designed for the simple and efficient coupling of glycoproteins to a solid agarose support through oxidized sugar groups

Expand 2 Items
Loading...

Anti-Blood Group Lewis a Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6). Blood Group Lewis a is a carbohydrate determinant carried on both glycolipids and glycoproteins.

Expand 1 Items
Loading...

Anti-Blood Group Lewis a Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6). Blood Group Lewis a is a carbohydrate determinant carried on both glycolipids and glycoproteins.

Expand 1 Items
Loading...

Anti-Blood Group Lewis a Rabbit Polyclonal Antibody

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6). Blood Group Lewis a is a carbohydrate determinant carried on both glycolipids and glycoproteins.

Expand 1 Items
Loading...

Anti-FUT6 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6).

Expand 1 Items
Loading...

Anti-FUT3 Rabbit Polyclonal Antibody

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6). Blood Group Lewis b is a carbohydrate determinant carried on both glycolipids and glycoproteins.

Expand 1 Items
Loading...

Anti-FUT6 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6).

Expand 1 Items
Loading...

Anti-Blood Group Lewis a Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6). Blood Group Lewis a is a carbohydrate determinant carried on both glycolipids and glycoproteins.

Expand 1 Items
Loading...

Anti-FUT6 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6).

Expand 1 Items
Loading...

Anti-FUT6 Rabbit Polyclonal Antibody

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6).

Expand 1 Items
Loading...

Sodium periodate, Pierce™

Supplier: Invitrogen

Thermo Scientific Pierce Sodium meta-Periodate is a gentle oxidizing agent that cleaves cis-diols in carbohydrate sugars to create amine-reactive aldehydes, providing many uses relating to the study and detection of glycoproteins.

Expand 1 Items
Loading...
Hi-Plex, Agilent Technologies

Hi-Plex, Agilent Technologies

Supplier: AGILENT TECHNOLOGIES, INC (CSD)

Hi-Plex HPLC columns for analysis of carbohydrates, sugars, and organic acids.

Expand 8 Items
Loading...

Anti-FUT6 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6).

Expand 1 Items
Loading...

Anti-FUT6 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6).

Expand 1 Items
Loading...

Anti-FPGT Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.

Expand 1 Items
Loading...
Biotin hydrazide, EZ-Link™

Biotin hydrazide, EZ-Link™

Supplier: Invitrogen

Thermo Scientific EZ-Link Hydrazide-Biotin is the shortest and simplest hydrazide-activated biotinylation reagent for labeling glycoproteins and other carbohydrate-containing compounds having oxidizable sugars or aldehydes.

Expand 1 Items
Loading...

Anti-Blood Group Lewis a Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which is an essential interface for biological recognition processes. Fucosyltransferases catalyze the covalent association of fucose to different positional linkages in sugar acceptor molecules. The carbohydrate moieties generated and covalently attached to cell surfaces are necessary to ensure a surface contour that satisfies physiological roles, which are reliant on adhesion molecules such as Selectins (1-3). Hematopoietic lineages rely on Fucosyltransferases to confer a surface carbohydrate phenotype, which mediates proper cell adhesion molecule recruitment and cell trafficking (4-6). Blood Group Lewis a is a carbohydrate determinant carried on both glycolipids and glycoproteins.

Expand 1 Items
Loading...

Anti-FPGT Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.

Expand 1 Items
Loading...

Anti-FPGT Rabbit Polyclonal Antibody

Supplier: Bioss

Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.

Expand 1 Items
Loading...

Anti-FPGT Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.

Expand 1 Items
Loading...

Difco™ Triple Sugar Iron Agar, BD Biosciences

Supplier: BECTON DICKINSON DE MEXICO, S. MX

Triple Sugar Iron Agar (TSI Agar) is used for the differentiation of Gram-negative enteric bacilli based on carbohydrate fermentation and the production of hydrogen sulfide.

Expand 1 Items
Loading...

Anti-FUT11 Rabbit Polyclonal Antibody (FITC (Fluorescein Isothiocyanate))

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.

Expand 1 Items
Loading...

Anti-FPGT Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.

Expand 1 Items
Loading...

Anti-FPGT Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Guanylyltransferase enzymes transfer one molecule of GTP to another molecule and also function in the transfer of guanosine nucleotides to sugar molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. L-fucose is an important sugar in complex carbohydrates that is frequently found on plant and mammalian N-linked glycans. FPGT (Fucose-1-phosphate guanylyltransferase), also known as GFPP (GDP-L-fucose pyrophosphorylase), is a 594 amino acid cytoplasmic protein that catalyzes the formation of GDP-L-fucose from L-fucose-1-phosphate and GTP. FPGT functions to reutilize the L-fucose that is produced uopn glycoprotein and glycolipid turnover.

Expand 1 Items
Loading...

Anti-FUT11 Rabbit Polyclonal Antibody (Cy3®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.

Expand 1 Items
Loading...

Anti-FUT11 Rabbit Polyclonal Antibody (Cy7®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.

Expand 1 Items
Loading...

Anti-FUT11 Rabbit Polyclonal Antibody (Cy5®)

Supplier: Bioss

Glycosyltransferases that mediate the regio- and stereoselective transfer of sugars, such as the fucosyltransferases, determine cell surface-carbohydrate profiles, which are essential interfaces for biological recognition processes. Fucosyltransferases (FucTs) catalyze the covalent association of fucose to different positional linkages on sugar acceptor molecules. The carbohydrate moieties that are generated are covalently attached to cell surfaces and are necessary to ensure a surface contour that satisfies a variety of physiological roles. FucT-XI is a 492 amino acid single-pass type II membrane protein that belongs to the glycosyltransferase 10 family. Localizing to Golgi apparatus, FucT-XI may act as a fucosyltransferase and exists as two alternatively spliced isoforms. The gene encoding FucT-XI maps to mouse chromosome 14 A3.

Expand 1 Items
Loading...

8-Aminopyrene-1,3,6-trisulfonic acid trisodium salt fluorescent dye

Supplier: Biotium

APTS is a very useful green fluorescent dye for labeling glycoproteins or sugar molecules in general. The labeling occurs via reductive amination which involves the formation of a Schiff base between the amine of APTS and the aldehyde or ketone of the sugar, followed by the reduction of the Schiff base linkage to a stable carbon-nitrogen bond. The multi-anionic nature of the dye makes it ideal for the studies of carbohydrate molecules by high resolution capillary electrophoresis.

Expand 1 Items
Loading...
Sort By