Order Entry
ContactUsLinkComponent
45416 results for "blot"

45416 Results for: "blot"

MPure Plant DNA Extraction Kit, MP Biomedicals

MPure Plant DNA Extraction Kit, MP Biomedicals

Supplier: MP Biomedicals

MPure Plant DNA Extraction Kit is used with the MPure-12 instrument for extraction of genomic DNA from plant (leaf, seeds and spores) and fungal tissues. Up to 100 mg of tissue can be used for purification.

Expand 2 Items
Loading...
Anti-INPPL1 Rabbit Polyclonal Antibody

Anti-INPPL1 Rabbit Polyclonal Antibody

Supplier: Bioss

Phosphatidylinositol (PtdIns) phosphatase that specifically hydrolyzes the 5-phosphate of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) to produce PtdIns(3,4)P2, thereby negatively regulating the PI3K (phosphoinositide 3-kinase) pathways. Plays a central role in regulation of PI3K-dependent insulin signaling, although the precise molecular mechanisms and signaling pathways remain unclear. While overexpression reduces both insulin-stimulated MAP kinase and Akt activation, its absence does not affect insulin signaling or GLUT4 trafficking. Confers resistance to dietary obesity. May act by regulating AKT2, but not AKT1, phosphorylation at the plasma membrane. Part of a signaling pathway that regulates actin cytoskeleton remodeling. Required for the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation. Participates in regulation of cortical and submembraneous actin by hydrolyzing PtdIns(3,4,5)P3 thereby regulating membrane ruffling. Regulates cell adhesion and cell spreading. Required for HGF-mediated lamellipodium formation, cell scattering and spreading. Acts as a negative regulator of EPHA2 receptor endocytosis by inhibiting via PI3K-dependent Rac1 activation. Acts as a regulator of neuritogenesis by regulating PtdIns(3,4,5)P3 level and is required to form an initial protrusive pattern, and later, maintain proper neurite outgrowth. Acts as a negative regulator of the FC-gamma-RIIA receptor (FCGR2A). Mediates signaling from the FC-gamma-RIIB receptor (FCGR2B), playing a central role in terminating signal transduction from activating immune/hematopoietic cell receptor systems. Involved in EGF signaling pathway. Upon stimulation by EGF, it is recruited by EGFR and dephosphorylates PtdIns(3,4,5)P3. Plays a negative role in regulating the PI3K-PKB pathway, possibly by inhibiting PKB activity.

Expand 1 Items
Loading...
Anti-IKKi Rabbit Polyclonal Antibody

Anti-IKKi Rabbit Polyclonal Antibody

Supplier: Bioss

Serine/threonine kinase that plays an essential role in regulating inflammatory responses to viral infection, through the activation of the type I IFN, NF-kappa-B and STAT signaling. Also involved in TNFA and inflammatory cytokines, like Interleukin-1, signaling. Following activation of viral RNA sensors, such as RIG-I-like receptors, associates with DDX3X and phosphorylates interferon regulatory factors (IRFs), IRF3 and IRF7, as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRF3 leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNB. In order to establish such an antiviral state, IKBKE forms several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including IPS1/MAVS, TANK, AZI2/NAP1 or TBKBP1/SINTBAD can be recruited to the IKBKE-containing-complexes. Activated by polyubiquitination in response to TNFA and interleukin-1, regulates the NF-kappa-B signaling pathway through, at least, the phosphorylation of CYLD. Phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. In addition, is also required for the induction of a subset of ISGs which displays antiviral activity, may be through the phosphorylation of STAT1 at 'Ser-708'. Phosphorylation of STAT1 at 'Ser-708' seems also to promote the assembly and DNA binding of ISGF3 (STAT1:STAT2:IRF9) complexes compared to GAF (STAT1:STAT1) complexes, in this way regulating the balance between type I and type II IFN responses. Protects cells against DNA damage-induced cell death. Also plays an important role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, wich leads to a negative impact on insulin sensitivity. Phosphorylates AKT1.

Expand 1 Items
Loading...
313376_260x190.jpg
DOWNLOAD YOUR COPY

Now Available: Our latest edition of elements!

Unlock innovation! Packed with products from both our leading suppliers and our exclusive Avantor® brands.

VIEW NOW!

Anti-BSEP Mouse Monoclonal Antibody

Anti-BSEP Mouse Monoclonal Antibody

Supplier: Enzo Life Sciences

Bile Salts
Bile salts are important physiological agents that serve a number of functions, including absorption, solubilization, transport and secretion of lipids. In the liver, they participate in the generation of bile flow and the secretion of cholesterol and phospholipids, such as phosphatidylcholine. When released into the intestine, they facilitate the uptake of cholesterol, fat-soluble vitamins and other lipids. Moreover, the biosynthesis of bile acids from cholesterol is the most significant pathway for the elimination of cholesterol from the body. However, because of their detergent properties, bile acids are inherently cytotoxic and disruptions in their normal transport or secretion can result in a variety of pathophysiological conditions.

BSEP
Bile formation is an important function of the liver. It is mediated by hepatocytes which generate bile flow within the bile canaliculi by continuous vectorial secretion of bile salts and other solutes across their canalicular (apical) membrane. Bile secretion is mediated by several ATP-binding cassette (ABC) transporters located in the canalicular membrane of hepatocytes. Among these ABC transporters, the bile salt export pump (BSEP or ABCB11) represents the primary, if not sole transport system for the canalicular excretion of bile salts. Bile secretory failure results in cholestasis and progressive familial intrahepatic cholestasis (PFIC) in infancy represents a group of inherited cholestatic diseases that are classified into three subtypes. One of these subtypes, PFIC II, is associated with mutations in the BSEP gene. PFIC patients with mutations in the BSEP gene have normal γ-glutamyltransferase activity, low concentrations of bile salts in bile, and an absence of bile duct proliferation. Additionally, human obesity is associated with altered cholesterol homeostasis including increased production and turnover, as well as secretion of excess cholesterol from the liver into bile.

BSEP is a multifunctional polypeptide with two homologous halves, each containing a hydrophobic membrane-ancoring domain and an ATP-binding cassette (ABC) domain. The membrane-anchoring domain is composed of six helixes buried in the lipid bilayer of the plasma membrane and the ATP binding ABCs are exposed to the cytosol. The membrane-anchoring domain helixes are thought to form channels spanning the plasma membrane.

Expand 1 Items
Loading...

Anti-RPS3 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...
ChIP DNA Clean and Concentrator™ Kits, Zymo Research

ChIP DNA Clean and Concentrator™ Kits, Zymo Research

Supplier: Zymo Research

The Chromatin Immunoprecipitation (ChIP) DNA Clean & Concentrator provides a hassle-free method for the rapid purification and concentration of high-quality DNA from any step in a standard ChIP protocol. This includes samples that have undergone reverse cross-linking, Proteinase K or RNase A digestion, mechanical or nuclease-mediated DNA shearing, and samples eluted from chromatin-antibody-bead complexes. The specially formulated ChIP DNA Binding Buffer promotes DNA adsorption to the column in the presence of detergents, antibodies, and proteinases that are often used for ChIP.

Expand 2 Items
Loading...
Anti-FXYD5 Rabbit Polyclonal Antibody

Anti-FXYD5 Rabbit Polyclonal Antibody

Supplier: Prosci

FXYD5 is a member of a family of small membrane proteins that share a 35-amino acid signature sequence domain, beginning with the sequence PFXYD and containing 7 invariant and 6 highly conserved amino acids. The approved human gene nomenclature for the family is FXYD-domain containing ion transport regulator. Mouse FXYD5 has been termed RIC (Related to Ion Channel). FXYD2, also known as the gamma subunit of the Na,K-ATPase, regulates the properties of that enzyme. FXYD1 (phospholemman), FXYD2 (gamma), FXYD3 (MAT-8), FXYD4 (CHIF), and FXYD5 (RIC) have been shown to induce channel activity in experimental expression systems. Transmembrane topology has been established for two family members (FXYD1 and FXYD2), with the N-terminus extracellular and the C-terminus on the cytoplasmic side of the membrane. This gene product, FXYD5, has not been characterized as a protein.This reference sequence was derived from AF161462.1 and ESTs; validated by multiple replicate ESTs and human genomic sequence. This gene encodes a member of a family of small membrane proteins that share a 35-amino acid signature sequence domain, beginning with the sequence PFXYD and containing 7 invariant and 6 highly conserved amino acids. The approved human gene nomenclature for the family is FXYD-domain containing ion transport regulator. Mouse FXYD5 has been termed RIC (Related to Ion Channel). FXYD2, also known as the gamma subunit of the Na,K-ATPase, regulates the properties of that enzyme. FXYD1 (phospholemman), FXYD2 (gamma), FXYD3 (MAT-8), FXYD4 (CHIF), and FXYD5 (RIC) have been shown to induce channel activity in experimental expression systems. Transmembrane topology has been established for two family members (FXYD1 and FXYD2), with the N-terminus extracellular and the C-terminus on the cytoplasmic side of the membrane. This gene product, FXYD5, has not been characterized as a protein. Two transcript variants have been found for this gene, and they are both predicted to encode the same protein.

Expand 1 Items
Loading...
RNAspin Mini Kits, Cytiva

RNAspin Mini Kits, Cytiva

Supplier: Cytiva

RNAspin Mini RNA Isolation Kit is a complete RNA purification kit designed for rapid extraction of high-quality total RNA from a wide range of sample types.

Expand 5 Items
Loading...
Anti-RPS3 Rabbit Polyclonal Antibody

Anti-RPS3 Rabbit Polyclonal Antibody

Supplier: Bioss

Involved in translation as a component of the 40S small ribosomal subunit (PubMed:8706699). Has endonuclease activity and plays a role in repair of damaged DNA (PubMed:7775413). Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA (PubMed:15707971). Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS) (PubMed:14706345). Has also been shown to bind with similar affinity to intact and damaged DNA (PubMed:18610840). Stimulates the N-glycosylase activity of the base excision protein OGG1 (PubMed:15518571). Enhances the uracil excision activity of UNG1 (PubMed:18973764). Also stimulates the cleavage of the phosphodiester backbone by APEX1 (PubMed:18973764). When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage (PubMed:23911537). Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide (PubMed:17049931). Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes (PubMed:18045535). Represses its own translation by binding to its cognate mRNA (PubMed:20217897). Binds to and protects TP53/p53 from MDM2-mediated ubiquitination (PubMed:19656744). Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization (PubMed:23131551). Involved in induction of apoptosis through its role in activation of CASP8 (PubMed:14988002). Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5 (PubMed:20605787). Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation (PubMed:22510408).

Expand 1 Items
Loading...

Anti-B4GALT7 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a β-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.β-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar. There are seven members of the β-1,4-Gal-T family, all of which are directed to the golgi apparatus through a hydrophobic sequence at the N-terminus. β-1,4-Gal-T7, also known as B4GALT7 or XGALT1, is a 327 amino acid single-pass type II membrane protein that is expressed at high levels in heart, pancreas and liver. β-1,4-Gal-T7 uses manganese to catalyze the UDP-dependent biosynthesis of glycosphingolipids. The gene encoding β-1,4-Gal-T7 is mutated in Ehlers-Danlos syndrome progeroid type (EDSP), a variant form of Ehlers-Danlos syndrome characterized by progeroid facies, mild mental retardation, short stature, skin hyperextensibility, moderate skin fragility, joint hypermobility principally in digits.-1,4-galactosyltransferases (β-1,4-Gal-T) are type II membrane-bound glycoproteins that are substrate-specific and function to transfer galactose in a ∫-1,4 linkage to an acceptor sugar.

Expand 1 Items
Loading...
MPure™ Viral Nucleic Acid Extraction Kit, MP Biomedicals

MPure™ Viral Nucleic Acid Extraction Kit, MP Biomedicals

Supplier: MP Biomedicals

The MPure Viral Nucleic Acid Extraction Kit is used with the MPure-12 instrument for the extraction of high quality viral DNA and RNA from serum, plasma or cell-free body fluids of 100 µL - 400 µL using proven magnetic particle separation technology.

Expand 2 Items
Loading...
Anti-B3GALT1 Rabbit Polyclonal Antibody

Anti-B3GALT1 Rabbit Polyclonal Antibody

Supplier: Prosci

B3GALT1 is a member of the beta-1,3-galactosyltransferase (beta3GalT) family. This family are type II membrane-bound glycoproteins with diverse enzymatic functions using different donor substrates (UDP-galactose and UDP-N-acetylglucosamine) and different acceptor sugars (N-acetylglucosamine, galactose, N-acetylgalactosamine). The beta3GalT genes are distantly related to the Drosophila Brainiac gene and have the protein coding sequence contained in a single exon. The beta3GalT proteins also contain conserved sequences not found in the beta4GalT or alpha3GalT proteins. The carbohydrate chains synthesized by these enzymes are designated as type 1, whereas beta4GalT enzymes synthesize type 2 carbohydrate chains. The ratio of type 1:type 2 chains changes during embryogenesis. By sequence similarity, the beta3GalT genes fall into at least two groups: beta3GalT4 and 4 other beta3GalT genes (beta3GalT1-3, beta3GalT5). This gene is expressed exclusively in the brain. The encoded protein shows strict donor substrate specificity for UDP-galactose.This gene is a member of the beta-1,3-galactosyltransferase (beta3GalT) gene family. This family encodes type II membrane-bound glycoproteins with diverse enzymatic functions using different donor substrates (UDP-galactose and UDP-N-acetylglucosamine) and different acceptor sugars (N-acetylglucosamine, galactose, N-acetylgalactosamine). The beta3GalT genes are distantly related to the Drosophila Brainiac gene and have the protein coding sequence contained in a single exon. The beta3GalT proteins also contain conserved sequences not found in the beta4GalT or alpha3GalT proteins. The carbohydrate chains synthesized by these enzymes are designated as type 1, whereas beta4GalT enzymes synthesize type 2 carbohydrate chains. The ratio of type 1:type 2 chains changes during embryogenesis. By sequence similarity, the beta3GalT genes fall into at least two groups: beta3GalT4 and 4 other beta3GalT genes (beta3GalT1-3, beta3GalT5). This gene is expressed exclusively in the brain. The encoded protein shows strict donor substrate specificity for UDP-galactose.

Expand 1 Items
Loading...
Anti-CDK1 Rabbit Polyclonal Antibody

Anti-CDK1 Rabbit Polyclonal Antibody

Supplier: Bioss

Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis. Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair.

Expand 1 Items
Loading...
Anti-Proteasome 11S Alpha Subunit Rabbit Polyclonal Antibody

Anti-Proteasome 11S Alpha Subunit Rabbit Polyclonal Antibody

Supplier: Enzo Life Sciences

The proteasome is widely recognised as the central enzyme of non-lysosomal protein degradation. It is responsible for intracellular protein turnover and it is also critically involved in many regulatory processes and, in higher eukaryotes, in antigen processing. An enzymatic cascade is responsible for the attachment of multiple ubiquitin molecules to lysine residues of proteins targeted for degradation. The 26S proteasome is the key enzyme of the ubiquitin/ATP-dependent pathway of protein degradation.

The catalytic core of this unusually large (2000kDa, 450Å in length) complex (31 subunits) is formed by the 20S proteasome, a barrel shaped structure shown by electron microscopy to comprise of four rings each containing seven subunits. 20S Proteasomes degrade only unfolded proteins in an energy-independent manner, whereas 26S proteasomes degrade native and ubiquitinylated proteins in an ATP-dependent manner. The native protein substrates are recognised by subunits, some with ATP binding sites, of the outer 19S caps of the 26S proteasome. The 19S regulatory subunit recognizes ubiquitinated proteins and plays an essential role in unfolding and translocating targets into the lumen of the 20S subunit. A second activator which can associate with the 20S proteasome in the absence of ATP is known as PA28 or the 11S regulator. The pure PA28 activator is a complex of two alternating subunits, PA28α and PA28β, which share approximately 50% homology but also show considerable similarity (30-40%) to a nuclear protein of unknown function, the Ki autoantigen (recently referred to as PA28γ). These subunits, with an apparent relative molecular weight of approximately 29kDa, form ringlike heteromeric complexes of ~200kDa possibly with an α3β3 stoichiometry. Electron microscopic studies have shown PA28 to be a ring shaped particle which, like the 19S, caps the 20S proteasome, by binding to the α-rings, at both or either end. The complex may, however, be readily dissociated. The finding that PA28 modulates the proteasome-catalysed production of antigenic peptides presented to the immune system on MHC class I molecules indicates a cellular function of this activator in antigen processing. Several genetic diseases are associated with defects in the ubiquitin-proteasome pathway. Some examples of affected proteins include those linked to cystic fibrosis, Angelman's syndrome, and Liddle syndrome.

Expand 2 Items
Loading...
Anti-SMAD2 Rabbit Polyclonal Antibody

Anti-SMAD2 Rabbit Polyclonal Antibody

Supplier: Prosci

SMAD2 belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. SMAD2 mediates the signal of the transforming growth factor (TGF)-beta, and thus regulates multiple cellular processes, such as cell proliferation, apoptosis, and differentiation. SMAD2 is recruited to the TGF-beta receptors through its interaction with the SMAD anchor for receptor activation (SARA) protein. In response to TGF-beta signal, SMAD2 is phosphorylated by the TGF-beta receptors. The phosphorylation induces the dissociation of this protein with SARA and the association with the family member SMAD4. The association with SMAD4 is important for the translocation of this protein into the nucleus, where it binds to target promoters and forms a transcription repressor complex with other cofactors. This protein can also be phosphorylated by activin type 1 receptor kinase, and mediates the signal from the activin.The protein encoded by this gene belongs to the SMAD, a family of proteins similar to the gene products of the Drosophila gene 'mothers against decapentaplegic' (Mad) and the C. elegans gene Sma. SMAD proteins are signal transducers and transcriptional modulators that mediate multiple signaling pathways. This protein mediates the signal of the transforming growth factor (TGF)-beta, and thus regulates multiple cellular processes, such as cell proliferation, apoptosis, and differentiation. This protein is recruited to the TGF-beta receptors through its interaction with the SMAD anchor for receptor activation (SARA) protein. In response to TGF-beta signal, this protein is phosphorylated by the TGF-beta receptors. The phosphorylation induces the dissociation of this protein with SARA and the association with the family member SMAD4. The association with SMAD4 is important for the translocation of this protein into the nucleus, where it binds to target promoters and forms a transcription repressor complex with other cofactors. This protein can also be phosphorylated by activin type 1 receptor kinase, and mediates the signal from the activin. Alternatively spliced transcript variants encoding the same protein have been observed.

Expand 1 Items
Loading...
Anti-GNAI1 Rabbit Polyclonal Antibody

Anti-GNAI1 Rabbit Polyclonal Antibody

Supplier: Prosci

Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules. They are found as heterotrimers made up of alpha, beta, and gamma subunits. Members of the G protein family have been characterized most extensively on the basis of the alpha subunit, which binds guanine nucleotide, is capable of hydrolyzing GTP, and interacts with specific receptor and effector molecules. The G protein family includes Gs and Gi, the stimulatory and inhibitory GTP-binding regulators of adenylate cyclase; Go, a protein abundant in brain (GNAO1); and transducin-1 (GNAT1) and transducin-2 (GNAT2), proteins involved in phototransduction in retinal rods and cones, respectively.Guanine nucleotide-binding proteins (G proteins) form a large family of signal-transducing molecules. They are found as heterotrimers made up of alpha, beta, and gamma subunits. Members of the G protein family have been characterized most extensively on the basis of the alpha subunit, which binds guanine nucleotide, is capable of hydrolyzing GTP, and interacts with specific receptor and effector molecules. The G protein family includes Gs (MIM 139320) and Gi, the stimulatory and inhibitory GTP-binding regulators of adenylate cyclase; Go, a protein abundant in brain (GNAO1; MIM 139311); and transducin-1 (GNAT1; MIM 139330) and transducin-2 (GNAT2; MIM 139340), proteins involved in phototransduction in retinal rods and cones, respectively (Sullivan et al., 1986 [PubMed 3092218]; Bray et al., 1987 [PubMed 3110783]). Suki et al. (1987) [PubMed 2440724] concluded that the human genome contains at least 3 nonallelic genes for alpha-i-type subunits of G protein; see, e.g, GNAI2 (MIM 139360), GNAI3 (MIM 139370), and GNAIH (MIM 139180).[supplied by OMIM]. Sequence Note: The RefSeq transcript and protein were derived from genomic sequence to make the sequence consistent with the reference genome assembly. The genomic coordinates used for the transcript record were based on alignments. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-APP Rabbit Polyclonal Antibody

Anti-APP Rabbit Polyclonal Antibody

Supplier: Biosensis

FUNCTION: Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1/Tip60 and inhibit Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity. Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. May be involved in copper homeostasis/oxidative stress through copper ion reduction. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. FUNCTION: Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. Rat and mouse beta-amyloid peptides bind only weakly transient metals and have little reducing activity due to substitutions of transient metal chelating residues. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation (By similarity). FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis. SUBUNIT: Binds, via its C-terminus, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1, Numb and Dab1. Binding to Dab1 inhibits its serine phosphorylation. Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains. Associates with microtubules in the presence of ATP and in a kinesin-dependent manner. Interacts, through a C-terminal domain, with GNAO1. Amyloid beta-42 binds CHRNA7 in hippocampal neurons. Beta-amyloid associates with HADH2. TISSUE SPECIFICITY: different isoforms in different tissues: kidney. brain. liver. hippocampus, substania nigra pars compacta and cerebellum. In the cerebellum, all the isoforms are abundantly expressed in Purkinje cells.

Expand 1 Items
Loading...

Anti-CDK1 Rabbit Polyclonal Antibody (HRP (Horseradish Peroxidase))

Supplier: Bioss

Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis. Inactivated by PKR/EIF2AK2- and WEE1-mediated phosphorylation upon DNA damage to stop cell cycle and genome replication at the G2 checkpoint thus facilitating DNA repair.

Expand 1 Items
Loading...
Anti-ADD2 Rabbit Polyclonal Antibody

Anti-ADD2 Rabbit Polyclonal Antibody

Supplier: Prosci

Adducins are heteromeric proteins composed of different subunits referred to as adducin alpha, beta and gamma. The three subunits are encoded by distinct genes and belong to a family of membrane skeletal proteins involved in the assembly of spectrin-actin network in erythrocytes and at sites of cell-cell contact in epithelial tissues. Adducin, originally purified from human erythrocytes, was found to be a heterodimer of adducins alpha and beta. Polymorphisms resulting in amino acid substitutions in these two subunits have been associated with the regulation of blood pressure in an animal model of hypertension. Structurally, each subunit is comprised of two distinct domains. The amino-terminal region is protease resistant and globular in shape, while the carboxy-terminal region is protease sensitive. The latter contains multiple phosphorylation sites for protein kinase C, the binding site for calmodulin, and is required for association with spectrin and actin. Adducins are heteromeric proteins composed of different subunits referred to as adducin alpha, beta and gamma. The three subunits are encoded by distinct genes and belong to a family of membrane skeletal proteins involved in the assembly of spectrin-actin network in erythrocytes and at sites of cell-cell contact in epithelial tissues. While adducins alpha and gamma are ubiquitously expressed, the expression of adducin beta is restricted to brain and hematopoietic tissues. Adducin, originally purified from human erythrocytes, was found to be a heterodimer of adducins alpha and beta. Polymorphisms resulting in amino acid substitutions in these two subunits have been associated with the regulation of blood pressure in an animal model of hypertension. Heterodimers consisting of alpha and gamma subunits have also been described. Structurally, each subunit is comprised of two distinct domains. The amino-terminal region is protease resistant and globular in shape, while the carboxy-terminal region is protease sensitive. The latter contains multiple phosphorylation sites for protein kinase C, the binding site for calmodulin, and is required for association with spectrin and actin. Various adducin beta mRNAs, alternatively spliced at 3'end and/or internally spliced and encoding different isoforms, have been described. The functions of all the different isoforms are not known.

Expand 1 Items
Loading...
Anti-APP Rabbit Polyclonal Antibody

Anti-APP Rabbit Polyclonal Antibody

Supplier: Biosensis

FUNCTION: Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1/Tip60 and inhibit Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity. Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. May be involved in copper homeostasis/oxidative stress through copper ion reduction. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. FUNCTION: Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. Rat and mouse beta-amyloid peptides bind only weakly transient metals and have little reducing activity due to substitutions of transient metal chelating residues. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation (By similarity). FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis. SUBUNIT: Binds, via its C-terminus, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1, Numb and Dab1. Binding to Dab1 inhibits its serine phosphorylation. Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains. Associates with microtubules in the presence of ATP and in a kinesin-dependent manner. Interacts, through a C-terminal domain, with GNAO1. Amyloid beta-42 binds CHRNA7 in hippocampal neurons. Beta-amyloid associates with HADH2. TISSUE SPECIFICITY: different isoforms in different tissues: kidney. brain. liver. hippocampus, substania nigra pars compacta and cerebellum. In the cerebellum, all the isoforms are abundantly expressed in Purkinje cells.

Expand 1 Items
Loading...
Anti-SMARCA4 Rabbit Polyclonal Antibody

Anti-SMARCA4 Rabbit Polyclonal Antibody

Supplier: Prosci

Transcriptional coactivator cooperating with nuclear hormone receptors to potentiate transcriptional activation. Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating a calcium-dependent release of a repressor complex and a recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves a release of HDAC1 and recruitment of CREBBP. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues. Also involved in vitamin D-coupled transcription regulation via its association with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor (VDR), which is required for the ligand-bound VDR-mediated transrepression of the CYP27B1 gene. Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1.

Expand 1 Items
Loading...
Anti-MTA2 Rabbit Polyclonal Antibody

Anti-MTA2 Rabbit Polyclonal Antibody

Supplier: Prosci

MTA2 has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling.This gene encodes a protein that has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling. It is closely related to another member of this family, a protein that has been correlated with the metastatic potential of certain carcinomas. These two proteins are so closely related that they share the same types of domains. These domains include two DNA binding domains, a dimerization domain, and a domain commonly found in proteins that methylate DNA. One of the proteins known to be a target protein for this gene product is p53. Deacteylation of p53 is correlated with a loss of growth inhibition in transformed cells supporting a connection between these gene family members and metastasis.This gene encodes a protein that has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling. It is closely related to another member of this family, a protein that has been correlated with the metastatic potential of certain carcinomas. These two proteins are so closely related that they share the same types of domains. These domains include two DNA binding domains, a dimerization domain, and a domain commonly found in proteins that methylate DNA. One of the proteins known to be a target protein for this gene product is p53. Deacteylation of p53 is correlated with a loss of growth inhibition in transformed cells supporting a connection between these gene family members and metastasis. Publication Note: This RefSeq record includes a subset of the publications that are available for this gene. Please see the Entrez Gene record to access additional publications.

Expand 1 Items
Loading...
Anti-INSR Rabbit Polyclonal Antibody

Anti-INSR Rabbit Polyclonal Antibody

Supplier: Prosci

Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. Ref.40 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, Ref.46 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.

Expand 1 Items
Loading...
Anti-ABL1 Rabbit Polyclonal Antibody

Anti-ABL1 Rabbit Polyclonal Antibody

Supplier: Prosci

Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9. Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 acts also as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1.

Expand 1 Items
Loading...
Anti-GST-PI Mouse Monoclonal Antibody

Anti-GST-PI Mouse Monoclonal Antibody

Supplier: Enzo Life Sciences

The GST Family
Glutathione S-transferases (GSTs) are a large multigen family of multifunctional enzymes, which play an important role in detoxification of potentially genotoxic chemicals, by catalyzing the conjugation of glutathione to a large number of hydrophobic and electrophilic compounds, including carcinogens. They also bind to a variety of nonsubstrate ligands. The GSTs are widely distributed in mammalian species and can be grouped into four classes, based on their biochemical, immunological and structural properties: alpha, mu, pi and theta.

GSTs are dimeric, mainly cytosolic, enzymes that have extensive ligand binding properties in addition to their catalytic role in detoxification. A separate microsomal class of GSTs exists which is quite distinct from the cytosolic GSTs, and is designated as "membrane-associated proteins in eicosanoid and glutathione metabolism" (MAPEG). The N-terminal region tends to be better conserved within classes as it includes an important part of the active site.GSTs are believed to play a role in cancer prevention, as the electrophilic compounds that are conjugated to glutathione could otherwise react with and modify cellular components such as DNA, thereby initiating carcinogenesis. On the other hand, GSTs might detoxify chemotherapeutic drugs in cancer cells, thus contributing to drug resistance.
In summary, GSTs are a group of enzymes which are centrally involved in drug metabolism and detoxification. Because of their role in detoxification, they have been implicated in drug sensitivity and resistance. They may also influence mutagenesis and carcinogenesis and thus, increased GST activity may become a useful cancer marker.
Since many GST genes are polymorphic, there has been considerable interest in determining whether particular allelic variants are also associated with an increase of risk for certain diseases.

Glutathione S-transferase-Pi
The GST-Pi class (phase II detoxification enzymes) is the most abundant of the human glutathione S-transferases family, a major group of detoxification enzymes and widely distributed in the human body.
In normal human tissues, the enzymes protect cells against reactions with glutathione and reactive oxygen species by reducing organic hydroperoxides via gluthathione peroxidase activity.
The role of GST-Pi in tumor growth and progression is less well known. It is reported to be variably expressed in breast cancer and is associated with estrogen receptor levels expressed by the tumor. Down-regulation of GST-Pi activity in a study done on a T cell line appears to favor apoptosis and inhibition of GST-Pi function induces apoptosis in rat hepatoma cells.
The importance in cancer research is clear, as GST-Pi has been implicated in protection against apoptosis and also suggested to have a role in jun kinase inhibition.
The majority of human tumor cell lines express significant amounts of class pi GST, which is why it is being investigated as a potential marker for various types of cancer. GST-Pi is thought to be associated with increased resistance to anticancer drugs. GST-Pi expression is under investigation as a prognostic indicator for resistance to chemotherapy and a marker of treatment resistance.

Expand 1 Items
Loading...
Anti-PSME3 Rabbit Polyclonal Antibody

Anti-PSME3 Rabbit Polyclonal Antibody

Supplier: Prosci

The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. The immunoproteasome contains an alternate regulator, referred to as the 11S regulator or PA28, that replaces the 19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator have been identified. PSME3 is the gamma subunit of the 11S regulator. Six gamma subunits combine to form a homohexameric ring.The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. The immunoproteasome contains an alternate regulator, referred to as the 11S regulator or PA28, that replaces the 19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator have been identified. This gene encodes the gamma subunit of the 11S regulator. Six gamma subunits combine to form a homohexameric ring. Two transcript variants encoding different isoforms have been identified.The 26S proteasome is a multicatalytic proteinase complex with a highly ordered structure composed of 2 complexes, a 20S core and a 19S regulator. The 20S core is composed of 4 rings of 28 non-identical subunits; 2 rings are composed of 7 alpha subunits and 2 rings are composed of 7 beta subunits. The 19S regulator is composed of a base, which contains 6 ATPase subunits and 2 non-ATPase subunits, and a lid, which contains up to 10 non-ATPase subunits. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. The immunoproteasome contains an alternate regulator, referred to as the 11S regulator or PA28, that replaces the 19S regulator. Three subunits (alpha, beta and gamma) of the 11S regulator have been identified. This gene encodes the gamma subunit of the 11S regulator. Six gamma subunits combine to form a homohexameric ring. Two transcript variants encoding different isoforms have been identified.

Expand 1 Items
Loading...
Recommended for You